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Abstract 
 

 
Memory allocation performance in single and multithreaded environments is an important 
aspect of many applications. Allocators such as malloc in the Solaris Operating System or 
ptmalloc in the GNU libc library work good with single-threaded applications. However, different 
approaches must be taken when designing new allocators optimized for a multithreaded 
application.  
 
The creators of Google's Thread-Caching Malloc (TCMalloc) and Lockless's LLAlloc all claim 
they are delivering better performance in malloc / realloc / free speeds compared to glibc's 
malloc, especially under multithreaded environment. In this report, we developed the traditional 
malloc as well as a simplified thread-caching malloc. Further, we compared their performance 
with Google’s TCMalloc. Then, our focus switched to studying how TCMalloc and LLAlloc made 
memory allocating more scalable. Finally, we benchmarked those allocators to elucidate their 
strength and bottlenecks. 
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 Introduction 
 

A good memory allocator needs to balance a number of goals. Two of these most prominent 
goals are minimizing time and minimizing space usage. Speed is important for any malloc 
implementation because if malloc can get faster, thousands of existing applications having 
bottlenecks on dynamic memory allocation will get significant performance boost without the 
need to change any code. 
To understand how TCMalloc and other memory allocators designed for multithreaded 
applications outperform traditional allocator such as glibc’s malloc, we need to explore its 
internal mechamisms first, identify key drawbacks in traditional glibc’s malloc, then design 
the new more efficient scalable memory allocators. 

 
 

 Working of Traditional Malloc (glibc): 
 
 Imagine the memory space as large continuous buffer.  

 
The allocator needs to maintain a data structure to keep track of how much space is 
allocated and how much space is free. This data structure is tagged to the beginning of the 
block and therefore amount of actual free space is size of the block minus size of the data 
structure. 

 
struct free_list {                             struct Header {  // Footer is the same structure as Header 
  struct free_list* next;                      size_t size; 
  struct free_list* prev;                      int    flag;  // Can be omitted, use last bit of size as flag 
};                                                    }; 

 

 
 



 Structure of Free Lists 
In order to reduce fragmentation, the memory is divided into fragments where each bin 
contains the chunks group by size. Each list will be a doubly-linked list. Not all the lists 
may be populated at any given time. 

 

 
 

Searches for available chunks are processed in smallest-first, best-fit order. Freed 
chunks are coalesced with neighboring ones, and held in bins that are searched in size 
order. Thus the general categorization of the algorithm is best first with coalescing. 

 
 Disadvantages of Traditional malloc and an improvement: 
 Lots of wasted space especially for small allocation objects: each Header / Footer 

occupies 4 bytes (in a 32 bit machine), if coalescing are adopted (without coalescing, 
only Header is required), every object must be surrounded by Header and Footer, so N-
8 byte objects will account for 16*N bytes. 

 If the size of a free object is bigger than required, but not big enough to carve into 
smaller objects, then there will be an internal fragmentation. 

 No mechanism to separate small allocations with large (eg. requesting more than 200 
MB memory) ones. Cannot adjust the bin size to speed up all kinds of allocations. 

 In a multithreaded application, these data structures need to be protected with locks. As 
memory is being allocated concurrently in multiple threads, all the threads must wait in 
line while requests are handled once at a time. Therefore, all threads are competing for 
access to the same heap causing a problem known as heap contention. 

 Adding a Second Layer (as a thread-cache) on top of the “Base Allocator” can greatly 
increase the scalability of the allocator (check the benchmark below). 
 

 A Comparison between 1 and 2 Layer traditional mallocs as well as TCMalloc: 
The testing problem let N threads allocate a total of MAXALLOC bytes, each thread will 
work on its private allocation/free of (MAXALLOC / N) bytes: 



 
 
 

 Google’s Thread-Caching Malloc (TCMalloc) 
 
 TCMalloc’s design to counter glibc malloc’s shortages: 
 Memories are allocated by a run of pages instead of arbitrary sizes, thus greatly reduced 

sbrk or mmap system call overhead. 
 Instead of using Header / Footer, a global page map was used to map between a given 

page to the location containing info about this page. For 64-bit architecture with 4K 
pages, 2^52 items have to be mapped. Therefore, a three-level radix tree was used to 
minimize memory cost, at the beginning, about 4.5 MB are used for the mapping. 

 Separating the small allocation (<= 32KB) with big ones. Also, each thread gets a private 
thread cache, lock free multi-threaded allocation can be achieved if there is enough 
space in thread cache. 

 Large object allocations are satisfied by the central page heap, the central heap is NOT 
thread-safe, so a spinlock has to be taken when allocating from central page heap. 
 

 Components of TCMalloc and our Implementation approach: 
 

 Base class, system allocator: 
This class controls the directly memory allocation from the underline system, in our 
approach, we used sbrk() call to allocate memory by 16K each time, the interface: 

           class sys_alloc { 
           public: 
              void* getMemFromOS(size_t size, int alignment = 0); 



              void releaseToOS(void* startpos, size_t  length); 
           }; 

// “releaseToOS” should be called less frequently, as if later requests run out of memory 
from central page heap, the allocator has to fetch memory from OS again, involving 
more overhead. 
 

 Central Page Allocator: 
 

Central page heap is the second lowest level of  the tcmalloc, it allocates / deallocates in 
the granularity of pages. However, it's not thread-safe, multi-threaded malloc request 
has to modify the status of this heap under a spinlock. 
The internal structure of this heap is an array of free lists. A kth entry in the array 
represents the list of runs consisting of k pages. The 256th entry is a free list of runs 
whose length is >= 256 (Here, only this list is sorted in non-decreasing order). 

 

 
 

 Span Objects 
Span contains information of a run of pages (whether it's being allocated or not. If 
allocated, whether this span belongs to a single larger object (>32K) or has been split up 
into several small objects (then store the correspond size-class info in the span as well)) 

 
          eg. Span a,b,c,d occupy 2 pages, 1 page, 5 pages and 3 pages respectively. 
 

 Heap Map 
Heap map maps pages to locations containing the information of this page (a span 
object). For 32 bit machines, this map can be maintained using an array of size 4 MB 
(2^20 entries, each 4 bytes). However, 64 bit machines need a specialized logarithm 
structure (3 level radix tree, with 2^16 nodes on root level and 2^18 nodes on the second 



and third level, thus at start up, this heap map will accounts for 4.5MB memory usage) to 
fit the representation in the memory. 

 
 

 Thread Specific Free List: 
Thread Caching Malloc reduces heap contention by allocation each thread a thread local 
cache.  
A thread cache is divided into various size classes where a size class represents objects 
of the given size. These size-classes are spaced so that small sizes are separated by 8 
bytes each, larger sizes are represented 16 bytes and so on. Each size-class contains a 
singly linked list of free object per size class. 

 
Thread - Specific Free List 

 
 Central Free List: 

All the threads share a common central free List. Each central free list is organized as a 
two-level data structure: a set of span, and a linked list of free objects per span. 
An object is returned to a central free list by adding it to the linked list of its containing 
span. If the linked list length now equals the total number of small objects in the span, 
this span is now completely free and is returned to the page heap. 
A central free list is guarded by spinlock for concurrent accesses. 

 
 

 Allocation : 
 

TCMalloc treats objects with size <= 32K as "small" objects: Below is the Small Object 
Allocation Algorithm: 

 
(1) Map size of the object to the corresponding size-class.  
(2) Look in the corresponding free list in the thread cache for the current thread.  
(3) If the Thread local free list is not empty, we remove the first object from the list and 
     return it. Till this stage TCMalloc acquires no locks. 
(4) On the other hand if the Thread local free list is empty, then  
     (a) Acquire the lock on central free list 
     (b) Fetch a bunch of objects from a central free list for this size-class.  
     (c) Place them in the thread-local free list.  



     (d) Return one of the newly fetched objects to the applications. 
(5) If the central free list is also empty:  
     (a) We allocate a run of pages from the central page allocator. 
     (b) Split the run into a set of objects of this size-class.  
     (c) Place the new objects on the central free list.  
     (d) As before, move some of these objects to the thread-local free list 

 
Large Object Allocation: 
Allocation for k pages is satisfied by looking in the kth free list in the central heap. If that 
free list is empty, we look in the next free list, and so forth. Eventually, we look in the last 
free list if necessary. If that fails, we fetch memory from the system. If an allocation for k 
pages is satisfied by a run of pages of length > k, the remainder of the run is re-inserted 
back into the appropriate free list in the central page allocator. 

 
 

 Deallocation: 
 

The following algorithm is used for the deallocation of the object. 
(1) Compute its page no  
(2) Map the page no to one of the span object.  
(3) Determine the type of object(small or large object). 
(4a) If the object is small insert it into the appropriate free list of the current thread’s 
cache.  If the thread cache now exceeds a predetermined size (2MB by default), a 
garbage moves the   unused objects from the thread cache into the central free lists.  
We also record the minimum length of the list ‘L’ since the last garbage collection. We 
use this past history as a predictor of future accesses and move L/2 objects from the 
thread cache free list to the corresponding central free list. This algorithm has the nice 
property that if a thread stops using a particular size, all objects of that size will quickly 
move from the thread cache to the central free list where they can be used by other 
threads. 
(4b) If the object is large, we look at the neighbouring spans associated with this object 
and if those are free, then we coalesce them with the current span and insert into the 
appropriate position in the central page allocator. 

 
 

 Further Improvements (Lockless’s LLAlloc) 
 

 LLAlloc’s design to further improve TCMalloc: 
 LLAlloc divides allocation into three categories by size (TCMalloc only introduced 2 

groups). Only the largest allocation sizes (those above 256MB) are allocated directly in a 
mutual exclusive way. 

 For Allocations above 512 bytes and below 256MB, the allocation was done by 
searching free blocks represented by a B-tree. This log(n)-time for lookup of b-tree 
blocks is fast and is being further improved by adding a cache in front of the b-tree 



algorithms. Therefore, there are great improvements in allocating medium size (32K to 
1MB) objects comparing to TCMalloc. 

 LLAlloc also utilized a wait-free queue for synchronization. There is one queue for each 
thread. A thread freeing a block from another thread will place the block on the correct 
queue and quickly return. Thus, even in a producer-consumer alloc-free scenario, it 
won’t have one thread cache starve but another thread cache overfull problem as in the 
TCMalloc allocator. 

 
 

 Benchmarking 
 

The test program forks a number of threads and performs a series of allocations and 
deallocations in each thread; the threads do not communicate other than by 
synchronization in the memory allocator. The memory allocators were benchmarked for 
execution time and memory usage. 

 
 Benchmark on basis of Execution Time: 

The graph shows the performance of different memory allocators for varying number of 
threads. 
The X-axis denotes the maximum memory allocation size (in a single malloc call) in the 
form of (2^number) bytes. The Y- axis denotes the execution time in Ticks 
(TicksClock::Ticks). 

 

 



                                       

 
  

 



 
 
 

 



 
 

 
 
 



 Observations: 
(1) TCMalloc is faster than ptmalloc and hence it is more scalable because there is 
contention problem between threads. 
(2) Lockless allocator uses lock free techniques to minimize latency and memory allocation, 
therefore it outperforms TCMalloc, particularly for larger allocation sizes. 
(3) TCMalloc’s performance drops off as the allocation size increases. This is because the 
per-thread cache is garbage-collected when it hits a threshold (defaulting to 2MB). With 
larger allocation sizes, fewer objects can be stored in the cache before it is garbage-
collected. 

 
 Benchmark on basis of Heap Usage: 

 

Memory Allocator Maximum heap usage / kbytes 

Glibc-malloc 3908 

TCMalloc 4128 

LLAlloc 3988 

 
 

 Observations: 
(1) For the same memory allocation requests, TCMalloc’s heap usage is higher than 

lockless because there is less contention for heap space and more heap request 
can be satisfied. 

(2) However, both TCMalloc and LLAlloc needs more heap space than traditional glibc 
malloc. This may due to the extra space required by the heap map for TCMalloc or 
LLAlloc’s B-tree search structure. However, if we are allocating very small objects 
(eg. 8 bytes objects), then glibc’s Header / Footer memory waste will show up, 
leading to more virtual memory usage. 

 
 

 Other thoughts: 
 A good memory allocator also has to maximize locality: 

That is, to allocate chunks of memory that are typically used together near each other. 
This helps to minimize page and cache misses during program execution. We will 
provide a real example in our presentation. 
 

 Security maybe another concern: 
To make a good memory allocator for a sensitive system, security may be also a 
concern. Because the heap may contain secret information which should be inaccessible 
to the user, which requires the memory allocated 
(1) Cannot be paged to disk. 



(2) Incredibly hard to access through an attached debugger. 
Josh[5] suggested to use “Virtual Alloc” in windows to set protection on the memory  
space, therefore, making more restricted memory allocator. 
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